Answer: 2.4 ml
Solution :
Molar mass of
= 17 g/mole
Given,: 28% w/w of
solution means 28 g of ammonia in 100 g of solution.
Mass of solution = 100 g
Now we have to calculate the volume of solution.
Molarity : It is defined as the number of moles of solute present in one liter of solution.

where,
n = moles of solute 
= volume of solution in liter = 0.11 L
Now put all the given values in the formula of molarity, we get

Using molarity equation:



Answer:
The answer to your question is P2 = 2676.6 kPa
Explanation:
Data
Volume 1 = V1 = 12.8 L Volume 2 = V2 = 855 ml
Temperature 1 = T1 = -108°C Temperature 2 = 22°C
Pressure 1 = P1 = 100 kPa Pressure 2 = P2 = ?
Process
- To solve this problem use the Combined gas law.
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
- Convert temperature to °K
T1 = -108 + 273 = 165°K
T2 = 22 + 273 = 295°K
- Convert volume 2 to liters
1000 ml -------------------- 1 l
855 ml -------------------- x
x = (855 x 1) / 1000
x = 0.855 l
-Substitution
P2 = (12.8 x 100 x 295) / (165 x 0.855)
-Simplification
P2 = 377600 / 141.075
-Result
P2 = 2676.6 kPa
It is given that the person weighs 62 kg = 62,000 g
Natural abundances in mass percent are:
O = 65%
C = 18%
H = 10%
N = 3.0%
Ca = 1.6%
P = 1.2%
Corresponding weights of the elements are:
O = 65/100 * 62000 g = 40.30 * 10^3 g
C = 18/100 * 62000 g = 11.16 * 10^3 g
H = 10/100 * 62000 g = 62.00 * 10^2 g
N = 3.0/100 * 62000 g = 18.60 * 10^2 g
Ca = 1.6/100 * 62000 g = 9.92 * 10^2 g
P = 1.2/100 * 62000 g = 7.44 * 10^2 g