Answer:
The number of moles of Sr in one mole of Sr(HCO₃)₂ = 1 mole
The number of moles of H in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of C in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of O in one mole of Sr(HCO₃)₂ = 6 moles
Explanation:
The given chemical formula of the compound is Sr(HCO₃)₂
The number of atoms of Sr in the compound = 1
The number of atoms of H in the compound = 2
The number of atoms of C in the compound = 2
The number of atoms of O in the compound = 6
The number of atoms of each element present in each formula unit of Sr(HCO₃)₂ is proportional to the number of moles of each atom in one mole of Sr(HCO₃)₂
Therefore;
The number of moles of Sr in one mole of Sr(HCO₃)₂ = 1 mole
The number of moles of H in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of C in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of O in one mole of Sr(HCO₃)₂ = 6 moles.
Answer:
Chlorowanie wody jest procesem względnie tanim – koszt zbudowania samej instalacji do dezynfekcji, jak również koszt operacyjny wytworzenia 1 metra sześciennego uzdatnionej chlorem wody jest niższy od dezynfekcji wody za pomocą ozonu. Źródłem chloru w procesie dezynfekcji jest zazwyczaj podchloryn sodu, rzadziej dwutlenek chloru.
Explanation:
Answer:
Q = 7.0
Q = kc. The reaction is in equilibrium
Explanation:
Based on the reaction:
Br₂ + Cl₂ ⇄ 2BrCl
Equilibrium constant of the reaction, kc, is the ratio of <em>equilibrium concentrations</em> products over reactants powered to its reaction coefficient:
Kc = [BrCl]² / [Br₂] [Cl₂] = 7.0
Now, reaction quotient, Q, is write as the same Kc but the concentrations are actual concentrations:
Q = [BrCl]² / [Br₂] [Cl₂]
Replacing:
Q = [0.00415M]² / [0.00366M] [0.000672M]
Q = 7.0
Now, as Q = Kc = 7.0, the reaction mixture is in equilibrium