Answer:
0.27 kg-m/s
Explanation:
i believe this is the correct answer
Answer:
V' = 0.84 m/s
Explanation:
given,
Linear speed of the ball, v = 2.85 m/s
rise of the ball, h = 0.53 m
Linear speed of the ball, v' = ?
rotation kinetic energy of the ball

I of the moment of inertia of the sphere

v = R ω
using conservation of energy


Applying conservation of energy
Initial Linear KE + Initial roational KE = Final Linear KE + Final roational KE + Potential energy



V'² = 0.7025
V' = 0.84 m/s
the linear speed of the ball at the top of ramp is equal to 0.84 m/s
Answer:
5 kg
Explanation:
Acceleration = 6 m/s^2
Force = 30 N
Force = mass * acceleration
mass = force / acceleration
mass = 30 / 6
mass = 5 kg
Answer:
In two significant figure 360K
Explanation:
The temperature difference (ΔT) can be calculated as the boiling temperature minus the freezing temperature in Fahrenheit.
Hence,
ΔT = 212 - 32
ΔT = 180°F
To convert to °F to kelvin, we use the formula below
= (°F - 32) × 5/9 + 273.15
= (180°F - 32) × 5/9 + 273.15
= 355.37K ⇔ 360K