Answer:
doppler shift's formula for source and receiver moving away from each other:
<em>λ'=λ°√(1+β/1-β)</em>
Explanation:
acceleration of spaceship=α=29.4m/s²
wavelength of sodium lamp=λ°=589nm
as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm
using doppler shift's formula:
<em>λ'=λ°√(1+β/1-β)</em>
putting the values:
700nm=589nm√(1+β/1-β)
after simplifying:
<em>β=0.17</em>
by this we can say that speed at that time is: v=0.17c
to calculate velocity at an acceleration of a=29.4m/s²
we suppose that spaceship started from rest so,
<em>v=v₀+at</em>
where v₀=0
so<em> v=at</em>
as we want to calculate t so:-
<em>t=v/a</em> v=0.17c ,c=3x10⁸ ,a=29.4m/s²
putting values:
=0.17(3x10⁸m/s)/29.4m/s²
<em>t=1.73x10⁶</em>
A switch
What are the answers choices
Answer:
d) 289.31 m
Explanation:
Energy provided by potential energy = mgh = m x 9.8x 200 sin10.5 = 357.18m
Energy used by friction = μmgcos 10.5 x 200 = .075 x m x 9.8 x cos 10.5 x200 = 144.54 m .
Energy used by friction on plain surface = μmg x d.( dis distance covered on plain ) =.075x m x 9.8 xd = .735 m d
To equate
357.18 m -144.54 m = .735 m d
d = 289.31 m .
Answer:
They would keep on moving but unless being acted upon or stop slowly because of the friction
Explanation: