Answer:
f1 = 58.3Hz, f2 = 175Hz, f3 = 291.6Hz
Explanation:
lets assume speed of sound is 350 m/s.
frequencies of a standing wave modes of an open-close tube of length L
fm = m(v/4L)
where m is 1,3,5,7......
and fm = mf1
where f1 = fundamental frequency
so therefore: f1 = 350 x 4 / 1.5
f1 = 58.3Hz
f2 = 3 x 58.3
f2 = 175Hz
f3 = 5 x 58.3
f3 = 291.6Hz
Answer:
53.32°C
Explanation:
Length of the aluminium wing = 35 m
Change in length of aluminium wing = 0.03 m
The linear expansion coefficient of aluminium 
We know that change in length is given by 
So 

So final temperature
Answer:
The average power the woman exerts is 0.5 kW
Explanation:
We note that power, P = The rate at which work is done = Work/Time
Work = Energy
The total work done is the potential energy gained which is the energy due to vertical displacement
Given that the vertical displacement = 5.0 m, we have
Total work done = Potential energy gained = Mass, m × Acceleration due to gravity, g × Vertical height, h
m = 51 kg
g = Constant = 9.81 m/s²
h = 5.0 m
Also, time, t = 5.0 s
Total work done = 51 kg × 9.81 m/s²× 5 m = 2501.55 kg·m²/s² = 2501.55 J
P = 2501.55 J/(5 s) = 500.31 J/s = 500.31 W ≈ 500 W = 0.5 kW.
Answer:
The answer is C.
Explanation:
Every point mass attracts every single other point mass by a force acting along the line intersecting both points. The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them. In magnitude, the force they apply each other is the same. Therefore, the force that the windshield exerts on the bug and the force that the bug exerts on the windshield are the same magnitude.
Colder in Alaska, warmer in Mexico.