Find the volume of the bottom and top separately and then add them.
Cylinder volume is the area of the bottom times the height
(22/7)(5^2)•175=13750 ft^3
The volume of a sphere is
V=(4/3)(22/7)r^3
where r is the radius. Here that's also 5 since it fits on the cylinder.
Also we only want half the sphere so use
V=(2/3)(22/7)•5^3=261.9 ft^3
Which we round upto 262.
Now add the parts together
13750+262=14,012 ft^3
Answer:Velocity can be represented by an arrow, with the length of the arrow representing speed and the way the arrow points representing direction. Objects have the same velocity only if they are moving at the same speed and in the same direction. ... The SI unit for velocity is m/s, plus the direction the object is traveling.
Answer:
(A) Consists of a small number of tiny particles that are far apart- relative in their size.
Explanation:
An <em>ideal gas</em> is defined as a simplification of a real gas, with punctual particles, in which all collisions are elastic, with random displacements and with no attractive force between them.
The assumption of the particles being punctual make clear that they do not have size at all. So if they were far apart-relative in their size, they can not collide each other, that is why assumption (B) can not be possible (<u><em>for that particular case</em></u>).
It is clear that (A) is not an assumption for an ideal gas, because do not fit in any of its properties.
Elastic collision: It is a case in which the energy is conserved (Kinetic Energy).
Kinetic Energy: It is the energy that will have an object as a consequence of its movement.
Answer:
1. What is not considered a cardiovascular workout?
A. Jogging
B. Sit ups
C. Jump Ropes
D. Burpees
Explanation:
I am sorry, I am in middle school and I only have one question.
Given:
initial angular speed,
= 21.5 rad/s
final angular speed,
= 28.0 rad/s
time, t = 3.50 s
Solution:
Angular acceleration can be defined as the time rate of change of angular velocity and is given by:

Now, putting the given values in the above formula:


Therefore, angular acceleration is:
