The equator is the closest part of out planet that is closest to the sun, which means that the continents closest to the equator will in turn be warmer.
Answer:
C) A low-density, cool gas in isolation creates a continuous spectrum.
Explanation:
Kirchhoff’s laws established that:
- A solid, liquid or dense incandescent gas emits a continuous spectrum.
- A hot and diffuse gas produces bright spectral lines (emission lines).
- A gas of lower temperature against a source of continuum spectrum, produces dark spectral lines (absorption lines) superposed in the continuum spectrum.
Stars are perfect examples for Kirchhoff’s laws. Since in the case of the stars, the photons that are received are not directly from the nucleus, but those that have traveled hundreds of thousands of years to reach the stellar atmosphere. Due to the stars are not at homogeneous temperature, density and pressure, but have gradients in different layers because of the nuclear reactions, superficial gravity or to its constant exchange of heat with its surroundings in an attempt to reach the thermodynamic equilibrium, the continuum observed in the stellar spectra comes from the inner layer of the photosphere, while absorption lines are formed in the outer layer of the photosphere and the stellar atmosphere. More accurately, a photon of the inner layer of the photosphere will be absorbed by an electron of an atom or ion that is in the outer layer, generating an electronic transition¹, the electron, upon returning to its base state will emit a photon or a series of photons that will not necessarily go in the same direction of the incident photon, creating an absorption line in the stellar spectrum.
On the other hand, in the case where the stars have surrounding material (diffuse gas), the atoms, molecules or ions in the medium are excited by the radiation that comes from the stellar atmosphere, thus producing an emission spectrum.
Key terms:
¹Electronic transition: When an electron passes from one energy level to another, either for the emission or absorption of a photon.
Answer:
Clara has speed of 80m/min
Explanation:
Clara was jogging at 600 m in 5 minutes. She stopped suddenly which reduced her velocity and then she waited for 10 minutes so that her friends comes near her. She stopped to catch her friend. During this 10 minutes the velocity of Clara is zero. She started to walk again at a slower speed of 80m/min.
Answer:
1.5F
Explanation:
Using
E= F/q
Where F= force
E= electric field
q=charge
F= Eq
So if qis tripled and E is halved we have
F= (E/2)3q
F= 1.5Eq=>> 1.5F
You have to find an equation that would relate the two motions of the locomotives. When they meet at a certain point after being 8.5 km apart initially, then that means that their individual distances traveled is equal to 8.5 The solution is as follows:
Distance = speed*time
Total distace = 8.5 = 155t + 155t
Solving for t,
t = 0.027 hour or 98.71 seconds