Answer:
Best answer will get Brainliest!!!
What is the volume scaled down by a factor of 1/10
Measurements:
Top: 7 in, both sides: 12 in, front: 12 in, back: 12 in, bottom: 7 in
Please help!
Explanation:
Answer;
- No, Two vectors of unequal magnitude can never sum to zero.
Explanation;
-Two vectors of equal magnitude that are pointing in opposite directions will sum to zero.
-Two vectors of unequal magnitude can never sum to zero. If they point along the same line, since their magnitudes are different, the sum will not be zero.
- If they point in different directions, then you can always decompose one vector into two components: one along the other vector and one perpendicular to the other vector. In this case, the perpendicular component can never be eliminated.
The sketch of the system is: two strings, 1 and 2, are attached to the ceiling and to a third string, 3.The third string holds the bag of cement.
The free body diagram of the weight with the string 3, drives to the tension T3 = weihgt => T3 = 325 N
The other free body diagram is around the joint of the three strings.
In this case, you can do the horizontal forces equilibrium equation as:
T1* cos(60) - T2*cos(40) = 0
And the vertical forces equilibrium equation:
Ti sin(60) + T2 sin(40) = T3 = 325 N
Then you have two equations with two unknown variables, T1 and T2
0.5 T1 - 0.766 T2 = 0
0.866 T1 + 0.643T2 = 325
When you solve it you get, T1 = 252.8 N and T2 = 165 N
Answer: T1 = 252.8 N, T2 = 165N, and T3 = 325N
Answer:
5.03 m
Explanation:
The wavelength of a wave is given by

where
v is the speed of the wave
f is the frequency of the wave
For the sonar signal in this problem,


Substituting into the equation, we find the wavelength:

Answer:
3.10 mole of C3H8O change in entropy is 89.54 J/K
Explanation:
Given data
mole = 3.10 moles
temperature = -89.5∘C = -89 + 273 = 183.5 K
ΔH∘fus = 5.37 kJ/mol = 5.3 ×10^3 J/mol
to find out
change in entropy
solution
we know change in entropy is ΔH∘fus / melting point
put these value so we get change in entropy that is
change in entropy 5.3 ×10^3 / 183.5
change in entropy is 28.88 J/mol-K
so we say 1 mole of C3H8O change in entropy is 28.88 J/mol-K
and for the 3.10 mole of C3H8O change in entropy is 3.10 ×28.88 J/K
3.10 mole of C3H8O change in entropy is 89.54 J/K