Answer:
= 1.7 cm
Explanation:
The magnification of the compound microscope is given by the product of the magnification of each lens
M = M₀
M = - L/f₀ 25/
Where f₀ and
are the focal lengths of the lens and eyepiece, respectively, all values in centimeters
In this exercise they give us the magnification (M = 400X), the focal length of the lens (f₀ = 0.6 cm), the distance of the tube (L = 16 cm), let's look for the focal length of the eyepiece (
)
= - L / f₀ 25 / M
Let's calculate
= - 16 / 0.6 25 / (-400)
= 1.67 cm
The minus sign in the magnification is because the image is inverted.
= 1.7 cm
Where they slide over each other.
Transform boundaries are formed or occur when two plates slide past each other in a sideways motion. They do not tear or crunch into each other (but the rock in between them may be ground up) and therefore none of the spectacular features are seen such as occur in divergent and convergent boundaries.
In a transform boundary, neither plate is added to at the boundary nor destroyed. They are marked in some places by features like stream beds that have been split in half and the two halves moved in opposite directions.
A red ladybug appears red in white light, red in red light, and black in blue light. Those would be the proper selections you'd need.
<span>Thermocline is a layer between
warm water from the ocean’s surface and cool water from below the ocean. In here,
the temperature decreases rapidly from the warmer layer to the colder layer. A thermocline forms due to the heat of the sun
heating the ocean’s surface. Because of the difference in density between warm
and cooler ocean water, cooler ocean water sinks and warmer ocean water floats.
This is caused due to the heat and mass transfer between particles of the
ocean. The answer is letter C. The sun’s radiation does not extend below a
certain depth; therefore, deeper ocean water is colder than surface water.</span>