Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec
Answer:
Explanation:
Since the block is at rest in an elevated position, we can assume that it only has potential energy.
U=mgh is the formula for potential energy where U=potential energy, m= mass, g=acceleration due to gravity, and h=height.
Plug in known variables....
U=4kg*9.8m/s^2*20m
U=784 joules of potential energy or letter A.
Answer:
The correct answer should be
A. 20 Joules
Explanation:
I'm taking the K12 Unit Test: Energy - Part 1 right now
Answer:
The greatest speed of the car is 19.36m/s
Explanation:
The maximum speed the car will attain without skidding is given by:
F= uN = umg ...eq1
But F = mv^2/r
mv^2/r = umg
Dividing both sides by m, leaves you with:
V= Sqrt(ugr)
Where u = coefficient of static friction
g = acceleration due to gravity
r = raduis
Given:
U = 0.82
r=0.82
g= 9.8m/s
V = Sqrt(0.82 × 9.8 × 45)
V = Sqrt(374.85)
V = 19.36m/s
the answer is ( True ) .
the current is the same in series circuits .