The statement that describes the magnetic field inside a bar magnet is as follows: it points from north to south.
<h3>What is a bar magnet?</h3>
A bar magnet is a permanent magnet of rectangular shape.
A magnet generally possess a magnetic field, which is a condition in the space around a magnet which there is a detectable magnetic force and the presence of two magnetic poles.
A bar magnet like every other magnet possesses a magnetic field that points from the north pole to the south pole.
Learn more about magnets at: brainly.com/question/13026686
#SPJ1
Answer:
First of all the formula is F= uR,( force= static friction× reaction)
mass= 5+25=30
F= 50
R= mg(30×10)=300
u= ?
F=UR
u= F/R
u= 50/300=0.17N
In the field of electromagnetism, when two charged plates that are situated opposite to each other by a certain distance, it forms an energy called the electric field. This energy is due to the difference in potential energy with respect to distance. Thus,
E = V/d
However, the voltage in volts is energy per coulomb. Thus,
V = (8x10-17 J/electron)*(1electron/1.60218x10^-19 C)
V = 499.32 volts
Therefore,
E = 499.32 volts /2.5 m
E = 199.73 N/C
The electric field that caused the change in potential energy is equal to 199.73 Newtons per Coulomb.
Answer:
option (b) 4900 N
Explanation:
m = 2000 kg, R = 6380 km = 6380 x 10^3 m, Me = 5.98 x 10^24 kg, h = R
F = G Me x m / (R + h)^2
F = G Me x m / 2R^2
F = 6.67 x 10^-11 x 5.98 x 10^24 x 2000 / (2 x 6380 x 10^3)^2
F = 4900 N
1) they are attracting because if you look at the arrows they’re all pointing the same way.
2) if the magnet was turned around they would do the opposite and not attract ( this is called repulsion)
3) magnetic pole
4)magnet
5) magnetic force
6) magnetism
Hope this helps