Answer:
W = 0.842 J
Explanation:
To solve this exercise we can use the relationship between work and kinetic energy
W = ΔK
In this case the kinetic energy at point A is zero since the system is stopped
W = K_f (1)
now let's use conservation of energy
starting point. Highest point A
Em₀ = U = m g h
Final point. Lowest point B
Em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
mg h = K
to find the height let's use trigonometry
at point A
cos 35 = x / L
x = L cos 35
so at the height is
h = L - L cos 35
h = L (1-cos 35)
we substitute
K = m g L (1 -cos 35)
we substitute in equation 1
W = m g L (1 -cos 35)
let's calculate
W = 0.500 9.8 0.950 (1 - cos 35)
W = 0.842 J
Thank you for posting your question here at brainly. Below is Yoland's study:
<span>Yolanda is studying two waves. The first wave has an amplitude of 2 m, and the second has an amplitude of 3 m.
</span>
I think the answer is "She can use constructive interference to generate a wave with an amplitude of 1.5 m."
Answer:

Explanation:
We are given that
Diameter=d=
Thickness=
Radius=
Using 
Dielectric constant=8
Resistance =
Internal specific resistance=r=100 ohm cm=
Using 1 m=100 cm
Internal resistance per unit length=
Using 
Internal resistance per unit length=
The middle or centre of the Earth is the core. However the middle of the layers from the surface to the centre of the Earth is known as mantle.
If it's a distance graph, then it's a constant speed.