M1v1=m2v2
m2=(m1v1)/v2
Where m is the molarities and v is the volumes
<span>m2=(25.0*0.500)/53.5
m2=12.5/53.5
m2=0.2336
by rounding off:
m2=0.234 M
so the answer is C: 0.234 M</span>
Answer:
As the kinetic energy of the gaseous solute increases, its molecules have a greater tendency to escape the attraction of the solvent molecules and return to the gas phase. Therefore, the solubility of a gas decreases as the temperature increases.
Explanation:
As the kinetic energy of the gaseous solute increases, its molecules have a greater tendency to escape the attraction of the solvent molecules and return to the gas phase. Therefore, the solubility of a gas decreases as the temperature increases
First, since l = n-1,
5,4,-5,1/2 and 2,1,0,1/2 are the only answer choices left.
Next, since ml = -l to l,
2,1,0,1/2
is the answer because in 5,4,-5,1/2, the ml value of -5 is not in the range of -4 to 4, as notes by the value 4 for l.
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.