There are 7 periods in the modern periodic table
Answer:
44 grams of CO₂ will be formed.
Explanation:
The balanced reaction is:
C + O₂ → CO₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- C: 1 mole
- O₂: 1 mole
- CO₂: 1 mole
Being the molar mass of each compound:
- C: 12 g/mole
- O₂: 32 g/mole
- CO₂: 44 g/mole
By stoichiometry the following mass quantities participate in the reaction:
- C: 1 mole* 12 g/mole= 12 g
- O₂: 1 mole* 32 g/mole= 32 g
- CO₂: 1 mole* 44 g/mole= 44 g
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
If 12 grams of C react, by stoichiometry 32 grams of O₂ react. But you have 40 grams of O₂. Since more mass of O₂ is available than is necessary to react with 12 grams of C, carbon C is the limiting reagent.
Then by stoichiometry of the reaction, you can see that 12 grams of C form 44 grams of CO₂.
<u><em>44 grams of CO₂ will be formed.</em></u>
Answer:
%age Yield = 34.21 %
Explanation:
The balance chemical equation for the decomposition of KClO₃ is as follow;
3 KOH + H₃PO₄ → K₃PO₄ + 3 H₂O
Step 1: Calculate moles of H₃PO₄ as;
Moles = Mass / M/Mass
Moles = 334.6 g / 97.99 g/mol
Moles = 3.414 moles
Step 2: Find moles of K₃PO₄ as;
According to equation,
1 moles of H₃PO₄ produces = 1 moles of K₃PO₄
So,
3.414 moles of H₃PO₄ will produce = X moles of K₃PO₄
Solving for X,
X = 1 mol × 3.414 mol / 1 mol
X = 3.414 mol of K₃PO₄
Step 3: Calculate Theoretical yield of K₃PO₄ as,
Mass = Moles × M.Mass
Mass = 3.414 mol × 212.26 g/mol
Mass = 724.79 g of K₃PO₄
Also,
%age Yield = Actual Yield / Theoretical Yield × 100
%age Yield = 248 g / 724.79 × 100
%age Yield = 34.21 %
Answer:

Explanation:
In this case, we can start with the <u>formula of Platinum (II) Chloride</u>. The cation is the atom at the left of the name (in this case
) and the anion is the atom at the right of the name (in this case
). With this in mind, the <u>formula would be</u>
.
Now, if we used <u>metallic copper</u> we have to put in the reaction only the <u>copper atom symbol</u>
. So, we have as reagents:

The question now is: <u>What would be the products?</u> To answer this, we have to remember <u>"single displacement reactions"</u>. With a general reaction:

With this in mind, the reaction would be:

I hope it helps!