Answer:
Explanation:
Ionic (or electrovalent) compounds conduct electricity when there they are in the aqueous state/solution because the charges of ions of these compounds are what carry the electric charges in the aqueous solution as a result of free movement within the aqueous solution which they do not "have" when in there solid state (where they have a highly restricted movement/compacted structure).
<span>A flashlight is an electric-powered light source; the light source is a light bulb or an LED. The electrical energy is converted into visible light. Flashlights can be hand-held or mounted to a platform. Light from a lighting, on the other hand, is formed by exciting electrons to a higher state. </span>
Answer:

Explanation:
In this case, we can start with the <u>formula of Platinum (II) Chloride</u>. The cation is the atom at the left of the name (in this case
) and the anion is the atom at the right of the name (in this case
). With this in mind, the <u>formula would be</u>
.
Now, if we used <u>metallic copper</u> we have to put in the reaction only the <u>copper atom symbol</u>
. So, we have as reagents:

The question now is: <u>What would be the products?</u> To answer this, we have to remember <u>"single displacement reactions"</u>. With a general reaction:

With this in mind, the reaction would be:

I hope it helps!
Answer:
FALSE
Since 0.385 < 0.526, the value for week 3 is accepted.
Explanation:
Qexp = (|Xq - Xₙ₋₁|)/w
where Xq is the suspected outlier; Xₙ₋₁ is the next nearest data point; w is the range of data
First, the data are arranged in decreasing order, from highest to lowest:
3. 5.6
2. 5.1
8. 5.1
1. 4.9
6. 4.9
5. 4.7
7. 4.5
4. 4.3
Xq = 5.6; Xₙ₋₁ = 5.1; w = 5.6 - 4.3 = 1.3
Qexp = (|5.6 - 5.1|)/1.3 = 0.385
From tables, at 95% confidence level, for n = 8, Qcrit = 0.526
Since 0.385 < 0.526, the value for week 3 is accepted.