Answer:
80 ft/s
Explanation:
Use III equation of motion
V^2 = U^2 + 2g h
Here, U = 0, g = 32 ft/s^2, h = 100 ft
V^2 = 0 + 2 × 32 ×100
V^2 = 6400
V = 80 ft/s
Answer
Around 400 B.C.E, the Greek philosopher Democritus introduced the idea of the atom as the basic building block matter. Democritus though that atoms are tiny, uncuttable, solid particles that are surrounded by empty space and constantly moving at random.
Pls give me BRAINLIEST
Here we will the speed of seagull which is v = 9 m/s
this is the speed of seagull when there is no effect of wind on it
now in part a)
if effect of wind is in opposite direction then it travels 6 km in 20 min
so the average speed is given by the ratio of total distance and total time


now since effect of wind is in opposite direction then we can say



Part b)
now if bird travels in the same direction of wind then we will have


now we can find the time to go back



Part c)
Total time of round trip when wind is present


now when there is no wind total time is given by


So due to wind time will be more
Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
Answer:
Why do insects fly so high?
Because the angle of attack is so high, a lot of momentum is transferred downward into the flow. These two features create a large amount of lift force as well as some additional drag. The important feature, however, is the lift.
Why an Aeroplane flying has kinetic
A flying aeroplane has potential energy has it flies above the ground level. And since the aeroplane is flying motion is associated with it and thus possesses kinetic energy. Hence a flying aeroplane has both potential and kinetic energ
Explanation: