Answer:
the mass of the air in the classroom = 2322 kg
Explanation:
given:
A classroom is about 3 meters high, 20 meters wide and 30 meters long.
If the density of air is 1.29 kg/m3
find:
what is the mass of the air in the classroom?
density = mass / volume
where mass (m) = 1.29 kg/m³
volume = 3m x 20m x 30m = 1800 m³
plugin values into the formula
1.29 kg/m³ = <u> mass </u>
1800 m³
mass = 1.29 kg/m³ ( 1800 m³ )
mass = 2322 kg
therefore,
the mass of the air in the classroom = 2322 kg

Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
Answer:
b) 472HZ, 408HZ
Explanation:
To find the frequencies perceived when the bus approaches and the train departs, you use the Doppler's effect formula for both cases:

fo: frequency of the source = 440Hz
vs: speed of sound = 343m/s
vo: speed of the observer = 0m/s (at rest)
v: sped of the train
f: frequency perceived when the train leaves us.
f': frequency when the train is getTing closer.
Thus, by doing f and f' the subjects of the formulas and replacing the values of v, vo, vs and fo you obtain:

hence, the frequencies for before and after tha train has past are
b) 472HZ, 408HZ
Here when car in front of us applied brakes then it is slowing down due to frictional force on it
So here we can say that friction force on the car front of our car is given as

So the acceleration of car due to friction is given as



now it is given that


so here we have


so the car will accelerate due to brakes by a = - 8.52 m/s^2