Answer:
Newton's law of gravitation, statement that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.
I believe the answer is Microwaves (just to clarify, not the oven). They're widely used for communications.<span />
5m/s
Explanation:
Given parameters:
Mass of ball = 0.1kg
Force on the ball = 5N
time taken = 0.1s
Unknown:
final speed of the ball = ?
Solution:
According to newton's second law "the net force on a body is the product of its mass and acceleration".
Force = mass x acceleration equation 1
Acceleration =
V is the final velocity
U is the initial velocity
T is the time taken
U = O since it is a stationary body;
a = 
Input "a" into equation 1
F = m x 
5 = 0.1 x 
V = 5m/s
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Answer:
The surface gravity is inversely proportional to the square of the radius of the planet
Explanation:
The gravity at the surface of a planet is given by:

where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
We see from the formula that the surface gravity is inversely proportional to the square of the radius of the planet, R.
At the Earth's surface, the value of the surface gravity is approximately 9.81 m/s^2.
Answer: When the electric field due to one is a maximum, the electric field due to the other is also a maximum, and this relation is maintained as time passes. They alternatively reinforce and cancel each other.
Explanation:
In a wave, the phase, is an arbitrary time reference, used to locate a given point of the wave in time, within a cycle.
Two waves can travel at the same speed, or even have the same wavelength, but this is not enough to be sure that at a given point in time, both waves will be in their maximum, as it only can be determined from the phase of the waves.
So, only when the waves reach at the same point in time at the same amplitude, we can say that they arrive in phase, in a constructive interference.