There is not enough information here.
r1 = 5*10^10 m , r2 = 6*10^12 m
v1 = 9*10^4 m/s
From conservation of energy
K1 +U1 = K2 +U2
0.5mv1^2 - GMm/r1 = 0.5mv2^2 - GMm/r2
0.5v1^2 - GM/r1 = 0.5v2^2 - GM/r2
M is mass of sun = 1.98*10^30 kg
G = 6.67*10^-11 N.m^2/kg^2
0.5*(9*10^4)^2 - (6.67*10^-11*1.98*10^30/(5*10^10)) = 0.5v2^2 - (6.67*10^-11*1.98*10^30/(6*10^12))
v2 = 5.35*10^4 m/s
Answer: The following statement is true about squall line thunderstorm development: <em><u>These often form ahead of the advancing front but rarely behind it because lifting of warm, humid air and the generation of a squall line usually occur in the warm sector ahead of an advancing cold front. Behind a cold front, the air motions are usually downward, and the air is cooler and drier.</u></em>
<em>An upper-level wave, accountable for the fabrication of a squall line, extend in front of and backside a cold front, the air backside the front is cold, steady and settling while the air ahead of the front is hot and co-seismic.</em>