Relative density, or specific gravity, is the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest; for gases, the reference is air at room temperature.
<em>Anything</em> that's dropped through air is somewhat affected by air resistance. But, out of that list, the leaf and the balloon are the items that will be affected by air resistance enough so that you can plainly see it.
If you spend some time thinking about it, you can kind of understand why airplane wings and boat propellers are shaped more like leafs and balloons than like bricks and rocks.
Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec
Smart Metering is a technology encouraging end-use energy efficiency. Smart Meters can give consumers clear and comprehensive information about their energy consumption and, giving them better information, can help consumers to become more energy efficient.
Hope it helped you... pls mark brainliest
Answer:
1 Ampere.
Explanation:
From the question given above, the following data were obtained:
Resistor 1 (R₁) = 20 ohm
Resistor (R₂) = 20 ohm
Voltage (V) = 10 V
Current (I) =?
Next, we shall determine the equivalent resistance in the circuit. This can be obtained as follow:
Resistor 1 (R₁) = 20 ohm
Resistor (R₂) = 20 ohm
Equivalent Resistance (R) =?
Since the resistors are in parallel connection, the equivalent resistance can be obtained as follow:
R = (R₁ × R₂) / (R₁ + R₂)
R = (20 × 20) / (20 + 20)
R = 400 / 40
R = 10 ohm
Finally, we shall determine the total current in the circuit. This can be obtained as illustrated below:
Voltage (V) = 10 V
Equivalent Resistance (R) = 10 ohm
Current (I) =?
V = IR
10 = I × 10
Divide both side by 10
I = 10 / 10
I = 1 Ampere
Therefore, the total current in the circuit is 1 Ampere.