Answer:
The rate of disappearance of
for this period is
Explanation:
Initial concentration of
= x = 0.0138 M
Final concentration of
= y = 0.00886 M
Time elapsed during change in concentration = Δt = 374 s
Change in concentration ,
= y - x = 0.00886 - 0.0138 M = -0.00494 M
The rate of disappearance of
for this period is:
![\frac{\Delta [NO_2]}{\Delta t}=\frac{-0.00494 M}{374 s}=-1.32\times 10^{-5} M/s](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B-0.00494%20M%7D%7B374%20s%7D%3D-1.32%5Ctimes%2010%5E%7B-5%7D%20M%2Fs)
Explanation:
The reaction rate decreases with a decrease in temperature. Catalysts can lower the activation energy and increase the reaction rate without being consumed in the reaction. Differences in the inherent structures of reactants can lead to differences in reaction rates.
It has to be dilute since the crystal dissolved and unsaturated for the same reason so B