Answer:
Explanation:
If one mole of carbon monoxide has a mass of 28.01 g and one mole of carbon dioxide has a mass of 44.01 g , it follows that the reaction produces 44.01 g of carbon dioxide for every 28.01 g of carbon monoxide.
Answer:
893 moles
Explanation:
An ideal gas at STP occupies 22.4 liters. Calculating Oxygen as if it were an ideal gas there are . 893 moles of Oxygen in 20.0 liters.
Mass i think hope and this helps u
Answer:
Like stratovolcanoes, they can produce violent, explosive eruptions, but their lava generally does not flow far from the originating vent. Cryptodomes The 1980 eruption of Mount St. Helens was an example; lava beneath the surface of the mountain created an upward bulge which slid down the north side of the mountain.
Explanation:
This problem is providing information about the initial mass of mercury (II) oxide (10.00 g) which is able to produce liquid mercury (8.00 g) and gaseous oxygen and asks for the resulting mass of the latter, which turns out to be 0.65 g after doing the corresponding calculations.
Initially, it is given a mass of 10.00 g of the oxide and 1.35 g are left which means that the following mass is consumed:

Now, since 8.00 grams of liquid mercury are collected, it is possible to calculate the grams of oxygen that were produced, by considering the law of conservation of mass, which states that the mass of the products equal that of the reactants as it is nor destroyed nor created. In such a way, the mass of oxygen turns out to be:

Learn more: