Answer:You can calculate it by finding the amount of work exerted.
Explanation:
In other words a infinitesimal segment dV caries the charge
<span>dQ = ρ dV </span>
<span>Let dV be a spherical shell between between r and (r + dr): </span>
<span>dV = (4π/3)·( (r + dr)² - r³ ) </span>
<span>= (4π/3)·( r³ + 3·r²·dr + 3·r·(dr)² + /dr)³ - r³ ) </span>
<span>= (4π/3)·( 3·r²·dr + 3·r·(dr)² + /dr)³ ) </span>
<span>drop higher order terms </span>
<span>= 4·π·r²·dr </span>
<span>To get total charge integrate over the whole volume of your object, i.e. </span>
<span>from ri to ra: </span>
<span>Q = ∫ dQ = ∫ ρ dV </span>
<span>= ∫ri→ra { (b/r)·4·π·r² } dr </span>
<span>= ∫ri→ra { 4·π·b·r } dr </span>
<span>= 2·π·b·( ra² - ri² ) </span>
<span>With given parameters: </span>
<span>Q = 2·π · 3µC/m²·( (6cm)² - (4cm)² ) </span>
<span>= 2·π · 3×10⁻⁶C/m²·( (6×10⁻²m)² - (4×10⁻²m)² ) </span>
<span>= 3.77×10⁻⁸C </span>
<span>= 37.7nC</span>
Answer:
the distance that the object is raised above its initial position is 5.625 m.
Explanation:
Given;
applied effort, E = 15 N
load lifted by the ideal pulley system, L = 16 N
distance moved by the effort, d₁ = 6 m
let the distance moved by the object = d₂
For an ideal machine, the mechanical advantage is equal to the velocity ratio of the machine.
M.A = V.R

Therefore, the distance that the object is raised above its initial position is 5.625 m.
Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N