Answer:
Earth would continue moving by uniform motion, with constant velocity, in a straight line
Explanation:
The question can be answered by using Newton's first law of motion, also known as law of inertia, which states that:
"an object keeps its state of rest or of uniform motion in a straight line unless acted upon by an external net force different from zero"
This means that if there are no forces acting on an object, the object stays at rest (if it was not moving previously) or it continues moving with same velocity (if it was already moving) in a straight line.
In this problem, the Earth is initially moving around the Sun, with a certain tangential velocity v. When the Sun disappears, the force of gravity that was keeping the Earth in circular motion disappears too: therefore, there are no more forces acting on the Earth, and so by the 1st law of Newton, the Earth will continue moving with same velocity v in a straight line.
Answer:
Force of gravity
Explanation:
when the force of gravity pulls large gas clouds and dust together, the concentrated gas clouds and dust collapse under the force of gravity forming stars.
There are many galaxies out there in the universe, each galaxy has its own solar systems, stars, and collection of gas and dust. We (earth) belong to the Milky Way galaxy, our galaxy got this name from the Romans. They called in 'via lactea', which directly translates to 'road of milk' because of the milky patch they saw at night.
<h2>
Answer: Gravitational attraction will be the same</h2>
According to the law of universal gravitation, which is a classical physical law that describes the gravitational interaction between different bodies with mass:
(1)
Where:
is the module of the force exerted between both bodies
is the universal gravitation constant.
and
are the masses of both bodies.
is the distance between both bodies
Now, if we double both masses and the distance also doubles, this means:
and
will be now
and 
will be now
Let's rewrite the equation (1) with this new values:
(2)
Solving and simplifying:
(3)
As we can see, equation (3) is the same as equation (1).
So, if the masses both double and the distance also doubles the <u>Gravitational attraction between both masses will remain the same.</u>
Verrrrry interesting !
If the moon were replaced by something with a vastly greater mass
but at the same distance, then ...
-- The period of its revolution around the Earth would be much shorter.
That is, it would orbit the Earth in much less than 27.3 days. We might
see it go through a complete set of phases in 2 weeks, or even 1 week.
-- The ocean tides would be much greater. Low tides would be
much lower, and high tides would be much higher.
-- Sadly, the land tides, and the forces on the Earth's internal structure,
would also be much greater. That means great increases in earthquake
and volcanic activity.
-- The Earth and moon both revolve around their common center of
mass. Under the current arrangement ... with the Earth having 80 times
the mass of the Moon ... that point is inside the Earth, and it looks a lot
like the Moon is orbiting a stationary Earth.
When the new body arrives to replace the lightweight Moon, that point
will be a lot closer to the new companion ... maybe even inside it.
Then, it will look a lot like the monster is the stationary one, and the
Earth is orbiting it.
I actually don't believe that we would SEE that change, or feel it.
Answer:
which language is these
Explanation:
we only use english , Hindi ,tamil , bengali and Malayalam
please tell us that it is which language. From that we will slove this