Answer:
0.8m per second
Explanation:
we measure speed as distance over time
distance=8m
time=10s
therefore speed = 8/10
=0.8m per second
From the calculations, the final momentum of B is 8.16 m/s
<h3>What is conservation of linear momentum?</h3>
According to the principle of the conservation of linear momentum, the momentum before collision is equal to the total momentum after collision.
This implies that;
MaUa + MbUb = MaVa + MaVa
Substituting values;
(0.08 kg * 0.5 m/s) + (0.05 kg * 0 m/s) = (0.08 kg * −0.1 m/s) + (0.05 kg * v)
0.4 = -0.008 + 0.05v
v = 8.16 m/s
Learn more about more about momentum: brainly.com/question/24030570:
#SPJ1
pavement is defined as the surface of Road or sidewalk.
for example, the surface of Expressway.
There are two types of pavement.
rigid pavement which consists of one layer.
flexible pavement which consist of multiple layers.
While driving on roads of rural areas, if our right wheel moves off the pavement, we should always hold the steering wheel firmly and then take our foot off the pedal, then apply brake lightly until we are moving at a low speed.
if you run off the pavement, you should: turn the steering wheel quickly toward the road steer straight and slow down before attempting to return to the pavement steer straight ahead and speed up apply the brakes hard
To know more about pavement:
brainly.com/question/28456065
#SPJ4
The force needed to stretch the steel wire by 1% is 25,140 N.
The given parameters include;
- diameter of the steel, d = 4 mm
- the radius of the wire, r = 2mm = 0.002 m
- original length of the wire, L₁
- final length of the wire, L₂ = 1.01 x L₁ (increase of 1% = 101%)
- extension of the wire e = L₂ - L₁ = 1.01L₁ - L₁ = 0.01L₁
- the Youngs modulus of steel, E = 200 Gpa
The area of the steel wire is calculated as follows;

The force needed to stretch the wire is calculated from Youngs modulus of elasticity given as;


Thus, the force needed to stretch the steel wire by 1% is 25,140 N.
Learn more here: brainly.com/question/21413915