Kinetic energy as she hits the water is 3300 joule.
To find the answer, we need to know about the Newton's equation of motion.
<h3>What's the Newton's equation of motion to determine the final velocity?</h3>
- The final velocity is determined as
V²=U²+2aS
- V= final velocity, U= initial velocity, a= acceleration and S= distance
<h3>What's the final velocity of the driver falling from 3.10m with initial velocity of 6.10m/s?</h3>
- Here, a= 9.8m/s², U= 6.10m/s and S= 3.10m
- So, V²= 6.1²+2×9.8×3.10= 98
- V= √98= 10m/s
<h3>What's the kinetic energy of the driver when touches the water?</h3>
Kinetic energy= 1/2×mass×velocity²
= 1/2 × 66 × 10²
= 3300J
Thus, we can conclude that the kinetic energy of the driver is 3300 Joule.
Learn more about the kinetic energy here:
brainly.com/question/25959744
#SPJ4
Answer:
σ = ±708 nC/m²
Q = ±177 nC
Explanation:
given data
Side of copper plate L = 50 cm
Electric field, E = 80 kN/C
solution
we get here Charge density,σ that is express as
σ = E x ε₀ ....................1
here ε₀ is Permittivity of free space that is 8.85 x 10⁻¹² C²/Nm²
so put value in eq1we get
σ = 80 x 10³ x 8.85 x 10⁻¹²
σ = 708 x 10⁻⁹ C/m²
σ = 708 nC/m²
and
now we get here total change on each faces
Q = σ A ...............2
Q = 708 x 10⁻⁹ x (0.50)²
Q = 177 nC
The answer is so we have more oxygen and because loggers are cutting down more trees every day and the more they cut the less air we have
Answer:
First answer.
Explanation:
There may be a 5N force, but if the frictional force also equals 5N, than they cancel eachother out, resulting in the brick still staying still, as it is resting on a (perfectly) level surface, but any amount of force would make the brick move.