<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
The answer is distressing
Answer:
(a) 8.362 rad/sec
(b) 6.815 m/sec
(c) 9.446 
(d) 396.22 revolution
Explanation:
We have given that diameter d = 1.63 m
So radius 
Angular speed N = 79.9 rev/min
(a) We know that angular speed in radian per sec

(b) We know that linear speed is given by

(c) We have given final angular velocity 
And 
Time t = 63 sec
Angular acceleration is given by 
(d) Change in angle is given by

Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
Answer:
Speed: Distance per time, 400 km/h, and a scalar quantity.
Velocity: Displacement per time, 20 m/s south, and a vector quantity.
Explanation:
Hope this helps! Please mark as brainliest.
Thanks!