Answer:
Part a)

Part b)

Part c)

Explanation:
As we know that acceleration is rate of change in velocity of the object
So here we know that


Part a)
differentiate x and y two times with respect to time to find the acceleration






Now the acceleration of the object is given as

at t= 1.1 s we have

now the net force of the object is given as



now magnitude of the force will be

Part b)
Direction of the force is given as



Part c)
For velocity of the particle we have




now at t = 1.1 s

now the direction of the velocity is given as



Answer:
150 million kilometres
Explanation:
The astronomical unit (symbol: au, or AU or AU) is a unit of length, roughly the distance from Earth to the Sun and equal to 150 million kilometres (93 million miles) or 8.3 light minutes.
Answer:
The pressure is constant, and it is P = 150kpa.
the specific volumes are:
initial = 0.062 m^3/kg
final = 0.027 m^3/kg.
Then, the specific work can be written as:

The fact that the work is negative, means that we need to apply work to the air in order to compress it.
Now, to write it in more common units we have that:
1 kPa*m^3 = 1000J.
-5.25 kPa*m^3/kg = -5250 J/kg.
Answer:
c) 12
Explanation:
A Solar eclipse occurs when The Sun, The Earth and The Moon comes in a straight line with the Moon being in between the Earth and the Sun. At this point the Moon appears to block the Sun and Moon's shadow falls on Earth. This would occur only on the day of the New Moon.
If the Moon's orbit was in the same plane as that of the Earth's orbit. Every new Moon, there would be a Solar Eclipse. The Lunar cycle is of 29.5 Days which means there will be one new Moon every month. So there will be 12 Solar Eclipses every year.
Currently, the orbit of the Moon is tilted at an angle of 5° thus we don't see that many Solar eclipses. Maximum of 5 solar eclipses can occur in an year.
The average speed of light is 186,000 mph