Answer:
B. 30m
Explanation:
This is because when a wave interferes constructively with another wave, they will add since constructive relates to joining or building up.
So, 10m + 20m equals a 30m wave.
Answer:

Explanation:
We are given that
Distance between plates=d=2.2 cm=


Using 
We have to find the magnitude of E in the region between the plates.
We know that the electric field for parallel plates





Where 
Substitute the values


Hence, the magnitude of E in the region between the plates=
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
Bcoz when you place a magnet close enough the magnet attracts or repals without any other fore we dont touch the magnet so it is non contact
To solve this problem we will apply the concept of voltage given by Coulomb's laws. From there we will define the charges and the distance, and we will obtain the total value of the potential difference in the system.
The length of diagonal is given as

The distance of the center of the square from each of the corners is

The potential electric at the center due to each cornet charge is




The total electric potential at the center of the given square is


Al the charges are equal, and the distance are equal to a, then


Therefore the correct option is E.