The velocity of the pitcher is <u>0.105 m/s</u> in a direction opposite to the velocity of the ball.
When no external force acts on a system, the total momentum of the system is conserved. The total initial momentum of the system is equal to the total final momentum of the system.
The pitcher and the ball are initially at rest, therefore, the total initial momentum of the system is zero.
Since no external forces act on the system comprising of pitcher and the ball, the total final momentum of the system is also equal to zero.
If the mass of the pitcher is mp and its speed is vp, the mass of the ball is mb and the ball's speed is vb, then the final momentum of the system of pitcher and the ball is given by,

Therefore,

Substituet 0.15 kg for mb, 50 kg for mp and 35 m/s for vb.

The pitcher has a velocity <u> 0.105 m/s</u> opposite to the direction of the velocity of the ball.
Answer:
4.2 m
Explanation:
Note: If energy is conserved, i.e no work is done against friction
Work input = work output.
Work output = Force output × distance,
Work input = force input × distance moved moved.
Therefore,
input force×distance moved = output force × distance moved........................Equation 1
Given: input force = 80 N, output force = 240 N, output distance = 1.4 m
Let input distance = d
Substitute into equation 1
80×d = 240×1.4
80d = 336
d = 336/80
d = 4.2 m.
Thus the rope around the pulley must be pulled 4.2 m
For a curved mirror, all points have the same normal and the angle of incidence is also equal to the angle of reflection.
According to the laws of reflection, the incident ray, reflected ray and normal all lie on the same plane. For a curved mirror, the normal remains the same at all points along the curved mirror.
Again, the angle made between the incident ray and the normal is the same as the angle made between the reflected ray and the normal. Therefore, the angle of reflection is equal to the angle of incidence.
Learn more: brainly.com/question/17638582
Answer:
hope this helps i think the answer is C