Answer:
a.proton, proton
hope this helped :) have a goodday
The attribute of any rotating object determined by the product of the moment of inertia and the angular velocity is known as angular momentum.
<h3>What is Angular Momentum?</h3>
- Without a kickstand, attempting to balance while getting on a bicycle will definitely result in you falling off. However, these wheels gain angular momentum once you begin pedaling. They're going to be resistant to change, which will make balance simpler.
- The definition of angular momentum is: any rotating object's characteristic determined by moment of inertia times angular velocity.
- It is a characteristic of rotating bodies determined by the sum of their moment of inertia and angular velocity. Since it is a vector quantity, the direction must also be taken into account in addition to the magnitude.
- Angular Momentum Examples : We encounter this property frequently, whether knowingly or unknowingly.
- The following provides some examples : Ice-skater
- In order to begin a spin, an ice skater starts with her hands and legs spread widely from the center of her body. She moves her hands and leg closer to her body when she needs to spin with more angular velocity, though.
- As a result, she conserves angular momentum and spins faster.
To Learn more About angular momentum refer to :
brainly.com/question/26889176
#SPJ4
Answer:
A homogeneous Mixture
Explanation:
The acid that contains the acetylsalicylic acid is a <u>mixture,</u> but it isnt a compound. though aspirin is. (hopefully this helps? qwq)
I think the correct answer would be to electrolyze water (run an electric current through it) to decompose it into hydrogen and oxygen. Assuming 100% efficiency, it is said that it needs about 40kWh per kilogram of water to fully decompose it.
Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.