Answer:
The answer is below
Explanation:
a) The initial velocity (u) = 24 m/s
We can solve this problem using the formula:
v² = u² - 2gh
where v = final velocity, g= acceleration due to gravity = 9.8 m/s², h = height.
At maximum height, the final velocity = 0 m/s
v² = u² - 2gh
0² = 24² - 2(9.8)h
2(9.8)h = 24²
2(9.8)h = 576
19.6h = 576
h = 29.4 m
b) The time taken to reach the maximum height is given as:
v = u - gt
0 = 24 - 9.8t
9.8t = 24
t = 2.45 s
The total time needed for the apple to return to its original position = 2t = 2 * 2.45 = 4.9 s
Answer:
567.321nm
Explanation:
See attached handwritten document for more details
Neap tide = tide where there is the least difference between high and low water levels
Spring tide = tide where there is the greatest difference between high and low water levels
Equator = an imaginary line drawn around earth dividing it into northern and southern hemispheres
Seasons = the divisions of the year marked by specific weather patterns and daylight hours.
Hope this helps!
Answer:
Yes
Explanation:
Kinetic energy is K.E1/2mv2 so that means it is directly proportional to mass and velocity.
Can you include an image of the object and it’s dimensions?