The concept required to solve this problem is associated with potential energy. Recall that potential energy is defined as the product between mass, gravity, and change in height. Mathematically it can be described as

Here,
= Change in height
m = mass of super heroine
g = Acceleration due to gravity
The change in height will be,

The final position of the heroin is below the ground level,

The initial height will be the zero point of our system of reference,


Replacing all this values we have,



Since the final position of the heroine is located below the ground, there will net loss of gravitational potential energy of 10744.81J
Answer: The light bends because light travels fast but it slows down in a denser medium. For example light refracts in water or it bends after passing through air. When light passes through air ( a less dense medium ) then through water ( a more dense medium ) the beam of light bends because light travels more slowly in a denser medium then it picks up its pace again once it passes. The density of the substance determines how much the light is refracted. I hope this makes sense and I hope this answered your question!! :)
An object's momentum is the product of its mass and its velocity:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
p = -80kg×m/s
m = 8kg
Plug in these values and solve for v:
-80 = 8v
v = -10m/s
Choice D
Answer:
Explanation:
Initial moment of inertia of the earth I₁ = 2/5 MR² , M is mss of the earth and R is the radius . If ice melts , it forms an equivalent shell of mass 2.3 x 10¹⁹ Kg
Final moment of inertia I₂ = 2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²
For change in period of rotation we shall apply conservation of angular momentum law
I₁ ω₁ = I₂ ω₂ , ω₁ and ω₂ are angular velocities initially and finally .
I₁ / I₂ = ω₂ / ω₁
I₁ / I₂ = T₁ / T₂ , T₁ , T₂ are time period initially and finally .
T₂ / T₁ = I₂ / I₁
(2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²) / 2/5 MR²
1 + 5 / 3 x 2.3 x 10¹⁹ / M
= 1 + 5 / 3 x 2.3 x 10¹⁹ / 5.97 x 10²⁴
= 1 + .0000064
T₂ = 24 (1 + .0000064)
= 24 hours + .55 s
change in length of the day = .55 s .
Answer:
a) I = 464 kg m², b) K = 631 .6 J, c) v = 8.25 m / s
Explanation:
a) the moment of inertia of point particles is
I = ∑ m_i r_i²
in this case
I = 8 5² + 3 (-2) ² + 7 (-6) ²
I = 464 kg m²
b) The kinetic energy is
K = ½ I w²
K = ½ 464 1.65²
K = 631 .6 J
c) linear and angular velocity are related
v = w r
v = 1.65 5
v = 8.25 m / s