Answer:
2 m
Step-by-step explanation:
Here the area and the lengths of the two parallel sides of this trapezoid are given:
A = 7m^2, b1 = 3 m and b2 = 4 m. What's missing is the width of the trapezoid.
First we write out the formula for the area of a trapezoid:
b1 + b2
A = --------------- * w, where w represents the width of the figure.
2
We need to solve this for the width, w. Multiplying both sides of the above equation by
2
------------
b1 + b2
results in
2A
------------ = w
b1 + b2
Substituting 7 m^2 for A, 3 m for b1 and 4 m for b2 results in
2(7 m^2) 14 m^2
w = ------------------ = ---------------- = 2 m
(3 + 4) m 7 m
The missing dimension is the width of the figure. This width is 2 m.
Answer:
sorry i dont know, i just rlly need points
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
Answer:
where...................
Step-by-step explanation:
.........................
<h3>Answer:</h3>
x/tan(x) is an even function
sec(x)/x is an odd function
<h3>Explanation:</h3>
<em>x/tan(x)</em>
For f(x) = x/tan(x), consider f(-x).
... f(-x) = -x/tan(-x)
Now, we know that tan(x) is an odd function, so tan(-x) = -tan(x). Using this, we have ...
... f(-x) = -x/(-tan(x)) = x/tan(x) = f(x)
The relation f(-x) = f(x) is characteristic of an even function, one that is symmetrical about the y-axis.
_____
<em>sec(x)/x</em>
For g(x) = sec(x)/x, consider g(-x).
... g(-x) = sec(-x)/(-x)
Now, we know that sec(x) is an even function, so sec(-x) = sec(x). Using this, we have ...
... g(-x) = sec(x)/(-x) = -sec(x)/x = -g(x)
The relation g(-x) = -g(x) is characeristic of an odd function, one that is symmetrical about the origin.