<h3>
Answer:</h3>
2.125 g
<h3>
Explanation:</h3>
We have;
- Mass of NaBr sample is 11.97 g
- % composition by mass of Na in the sample is 22.34%
We are required to determine the mass of 9.51 g of a NaBr sample.
- Based on the law of of constant composition, a given sample of a compound will always contain the sample percentage composition of a given element.
In this case,
- A sample of 11.97 g of NaBr contains 22.34% of Na by mass
A sample of 9.51 g of NaBr will also contain 22.345 of Na by mass
% composition of an element by mass = (Mass of element ÷ mass of the compound) × 100
Mass of the element = (% composition of an element × mass of the compound) ÷ 100
Therefore;
Mass of sodium = (22.34% × 9.51 g) ÷ 100
= 2.125 g
Thus, the mass of sodium in 9.51 g of NaBr is 2.125 g
Answer:
There will be more collisions and so a greater pressure. The number of particles is proportional to pressure, if the volume of the container and the temperature remain constant. ... Volume is inversely proportional to pressure, if the number of particles and the temperature are constant.
B is the.answer for this problem
Answer:
B) Gamma
Explanation:
Gamma is by far the most powerful, and only one that can produce this much energy