The correct one is gamma rays. Lets go over them one by one.
Gamma rays are rays that arise from gamma decay, a type of radioactive decay. Often, after another decay, the nucleus is still unstable and it gives off energy in the form of gamma rays to stabilize itself. Hence, gamma rays have nothing to do with the electron structure, only with the nucleus of the atom.
X-rays are the product of accelerating electrons, hence only specific atoms can emit a specific energy of X-rays; similarly for the photoelectric phenomenon, the energy which is needed for photoelectrons to be created depends on the electron structure of the atom (in both cases, it is important to see how strong the bond between electron and atom is).
Finally, spectral lines differ depending on the electron structure of the atoms since electrons with different energies absorb different frequencies of light.
Ok so B would be the best surface to reflect heat energy as it's polished and does not disturb the wave of energy like the others would. Also in therms of colour it's better because it's a lighter colour than navy ( the darker colour of the spectrum ). This matters as darker colours absorb light where light colour reflect it.
Hope this helps :).
Answer:
Fan Speed For Low Position vs Time Graph : The slope is curved and it increases as you go up . The points start off close but they spread out as the time increases.
Fan Speed For Medium Position vs Time Graph : The speed increases quicker than the graph for low speed. The graph is less curved than the one for low speed. Also, the points spread out faster than they did for low speed as the time increases.
Fan Speed For High Position vs Time Graph: The Graph has a smaller curve then the low and medium speed. Also , the points are the furthest apart. The slope is not as spaced out as it was for the rest of the speed graphs .
Explanation: I just finished the lab:)
Answer:
3 kg
Explanation:
Momentum before = momentum after
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
After jumping on the skateboard, the student and the skateboard have the same velocity, so v₁ = v₂.
m₁u₁ + m₂u₂ = (m₁ + m₂) v
(47.4 kg) (4.2 m/s) + m (0 m/s) = (47.4 kg + m) (3.95 m/s)
m = 3 kg
Answer:
The velocity of the camera is 33.11 m/s.
Explanation:
Given that,
Speed = 10.8 m/s
Altitude = 50 m
Suppose determine the velocity of the camera just before it hits the ground?
We need to calculate the velocity of the camera
Using equation of motion

Where, v = final velocity of camera
u = initial speed of camera
s = distance
Put the value into the formula



The direction will be downward so it is the negative velocity.
Hence, The velocity of the camera is 33.11 m/s.