Answer:

Explanation:
Notation
represent the tensile strength for the Kevlar 49 fibers
represent the tensile strength for the epoxy resin
79% by volume is made of Kevlar 49 fibers
The rest 100-79=21% is made of epoxy resin
Tensile strength is a "measurement of the force required to pull something such as rope, wire, or a structural beam to the point where it breaks". Can be defined as "the maximum amount of tensile stress that it can take before failure".
For this case we need to use a basis of calculus since we don't know the total volume but we can assume a reference value on order to make the calculations.
If we assume a total volume of
we can do the follwoing balance:

We can replace the values given:


So then the strength of the composite material is : 
1.) The properties of a wave are the following.
a) <span><span>Amplitude - the height of the wave, measured in meters.
</span><span>b) Wavelength - the distance between adjacent crests, measured in meters.
</span><span>c) Period - the time it takes for one complete wave to pass a given point, measured in seconds.
</span><span>d) Frequency - the number of complete waves that pass a point in one second, measured in inverse seconds, or Hertz (Hz).
</span><span>e) Speed - the horizontal speed of a point on a wave as it propagates, measured in meters / second.
Among these properties, PERIOD and SPEED changes if the wave changes media. The others remain the same.
2. Speed = Wavelength * Frequency
Wavelength and Frequency are independent from each other. But you can use the given formula and assume values to check the reaction of one from another.
3. Energy of a wave is based on its amplitude. High amplitude means high energy and vice versa. To increase the energy of a wave, the amplitude must be increased. Another way of increasing the energy of a wave is using elastic medium. </span></span>
Answer:
Elevation =31.85[m]
Explanation:
We can solve this problem by using the principle of energy conservation. This consists of transforming kinetic energy into potential energy or vice versa. For this specific case is the transformation of kinetic energy to potential energy.
We need to first identify all the input data, and establish a condition or a point where the potential energy is zero.
The point where the ball is thrown shall be taken as a reference point of potential energy.
![E_{p} = E_{k} \\where:\\E_{p}= potential energy [J]\\ E_{k}= kinetic energy [J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20E_%7Bk%7D%20%5C%5Cwhere%3A%5C%5CE_%7Bp%7D%3D%20potential%20energy%20%5BJ%5D%5C%5C%20E_%7Bk%7D%3D%20kinetic%20energy%20%5BJ%5D)
m = mass of the ball = 300 [gr] = 0.3 [kg]
v = initial velocity = 25 [m/s]
![E_{k}=\frac{1}{2} * m* v^{2} \\E_{k}= \frac{1}{2} * 0.3* (25)^{2} \\E_{k}= 93.75 [J]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20m%2A%20v%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%200.3%2A%20%2825%29%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D%2093.75%20%5BJ%5D)
![93.75=m*g*h\\where:\\g = gravity = 9.81 [m/s^2]\\h = elevation [m]\\replacing\\h=\frac{E_{k}}{m*g} \\h=\frac{93.75}{.3*9.81} \\h=31.85[m]](https://tex.z-dn.net/?f=93.75%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cg%20%3D%20gravity%20%3D%209.81%20%5Bm%2Fs%5E2%5D%5C%5Ch%20%3D%20elevation%20%5Bm%5D%5C%5Creplacing%5C%5Ch%3D%5Cfrac%7BE_%7Bk%7D%7D%7Bm%2Ag%7D%20%5C%5Ch%3D%5Cfrac%7B93.75%7D%7B.3%2A9.81%7D%20%5C%5Ch%3D31.85%5Bm%5D)
Answer:
The longest wavelength of light is 209 nm.
Explanation:
Given that,
Spring constant = 74 N/m
Mass of electron 
Speed of light 
We need to calculate the frequency
Using formula of frequency

Where, k= spring constant
m = mass of the particle
Put the value into the formula


We need to calculate the longest wavelength that the electron can absorb

Where, c = speed of light
f = frequency
Put the value into the formula



Hence, The longest wavelength of light is 209 nm.
Answer:
The size of an object is directly proportional to the gravity
Explanation:
The size of an object has significant impact on the gravity exerted by such a body.
The more massive a body is, the larger the gravity it exerts.
The reason for this is because of the newton's law of universal gravitation.
- It states that "the gravitational force between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
- As such, gravity is directly proportional to mass