Answer:
1.2×10² mmole of Na₂S₂O₃
Explanation:
From the question given above, the following data were obtained:
Volume = 0.6 L
Molarity = 0.2 mol/L
Mole of Na₂S₂O₃ =?
Molarity is simply defined as the mole of solute per unit litre of water. Mathematically, it is expressed as:
Molarity = mole /Volume
With the above formula, we can obtain the number of mole of Na₂S₂O₃ in the solution as illustrated below:
Volume = 0.6 L
Molarity = 0.2 mol/L
Mole of Na₂S₂O₃ =?
Molarity = mole /Volume
0.2 = Mole of Na₂S₂O₃ / 0.6
Cross multiply
Mole of Na₂S₂O₃ = 0.2 × 0.6
Mole of Na₂S₂O₃ = 0.12 mole
Finally, we shall convert 0.12 mole to millimole (mmol). This can be obtained as follow:
1 mole = 1000 mmol
Therefore,
0.12 mole = 0.12 mole × 1000 mmol / 1 mole
0.12 mole = 120 = 1.2×10² mmole
Thus, the chemist added 1.2×10² mmole of Na₂S₂O₃
Answer:
239.45 K
Explanation:
Ideal gas law formula is P1V1T2=P2V2T1
Rearrange that to get...
T2=T1P2V2/P1V1
Fill in the values and solve.
Answer:
Potassium
1s2 2s2 2p6 3s2 3p6 4s1
Explanation:
The atom having only one electron its outermost shell must belong to an element in group one of the periodic table.
Having noted that, we proceed to find out what element in group one that has the atom just described in the question.
That atom must belong to an element in the fourth period. The only group 1 element in the fourth period is potassium.
The electron configuration of potassium is;
1s2 2s2 2p6 3s2 3p6 4s1
Answer:
fluoride ion with a charge of -1
Explanation:
If a fluorine atom gains an electron, it becomes a fluoride ion with an electric charge of -1.