1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bagirrra123 [75]
3 years ago
8

___is when a force is exerted on an object and the object moves a distance in the direction of the force.

Physics
2 answers:
Ilia_Sergeevich [38]3 years ago
8 0
That's a description of WORK in Physics.
defon3 years ago
5 0

The correct option is A) work.

Work is said to be done by a force when a force is exerted on an object and the the object on which the force is exerted moves in the direction of the force.

The amount of work done is given by the product of the force and the displacement made by the object.

Option (B) is incorrect, since Watt is the unit of power.

Option (C) is wrong, since joule is the unit of work or energy.

Option (D) is wrong, since power is the rate at which work is done.

You might be interested in
Work done= ________ transferred
mamaluj [8]

Answer:

Work done= Energy transferred

Explanation:

Work is the transfer of energy. In physics we say that work is done on an object when you transfer energy to that object. If you put energy into an object, then you do work on that object (mass).

4 0
3 years ago
Explain why air masses do not mix
kati45 [8]

 

Different densities have to have a reason - different pressure and/or humidity etc. If there is a different pressure, there is a mechanical force that preserves the pressure difference: think about the cyclones that have a lower pressure in the center. The cyclones rotate in the right direction and the cyclone may be preserved by the Coriolis force.

If the two air masses differ by humidity, the mixing will almost always lead to precipitation - which includes a phase transition for water etc. It's because the vapor from the more humid air mass gets condensed under the conditions of the other. You get some rain. In general, intense precipitation, thunderstorms, and other visible isolated weather events are linked to weather fronts.

At any rate, a mixing of two air masses is a nontrivial, violent process in general. That's why the boundary is called a "front". In the military jargon, a front is the contested frontier of a conflict. So your idea that the air masses could mix quickly and peacefully - whatever you exactly mean quantitatively - either neglects the inertia of the air, a relatively low diffusion coefficient, a low thermal conductivity, and/or high latent heat of water vapor. A front is something that didn't disappear within minutes so pretty much tautologically, there must be forces that make such a quick disappearance impossible.

3 0
3 years ago
Given a particle that has the velocity v(t) = 3 cos(mt) = 3 cos (0.5t) meters, a. Find the acceleration at 3 seconds. b. Find th
DiKsa [7]

Answer:

a.\rm -1.49\ m/s^2.

b. \rm 50.49\ m.

Explanation:

<u>Given:</u>

  • Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .

<h2>(a):</h2>

The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.

\rm a = \dfrac{dv}{dt}\\=\dfrac{d}{dt}(3\cos(0.5\ t ))\\=3(-0.5\sin(0.5\ t.))\\=-1.5\sin(0.5\ t).

At time t = 3 seconds,

\rm a=-1.5\sin(0.5\times 3)=-1.49\ m/s^2.

<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>

<h2>(b):</h2>

The velocity of the particle at some is defined as the rate of change of the position of the particle.

\rm v = \dfrac{dr}{dt}.\\\therefore dr = vdt\Rightarrow \int dr=\int v\ dt.

For the time interval of 2 seconds,

\rm \int\limits^2_0 dr=\int\limits^2_0 v\ dt\\r(t=2)-r(t=0)=\int\limits^2_0 3\cos(0.5\ t)\ dt

The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,

\Delta r=3\ \left (\dfrac{\sin(0.5\ t)}{0.05} \right )\limits^2_0\\=3\ \left (\dfrac{\sin(0.5\times 2)-sin(0.5\times 0)}{0.05} \right )\\=3\ \left (\dfrac{\sin(1.0)}{0.05} \right )\\=50.49\ m.

It is the displacement of the particle in 2 seconds.

7 0
3 years ago
A solenoid coil with 22 turns of wire is wound tightly around another coil with 340 turns. The inner solenoid is 25.0 cm long an
LUCKY_DIMON [66]

Answer:

a) 1.34*10^-8 W

b) 1.18*10^-5 H

c) 20mV

Explanation:

a) To find the average magnetic flux trough the inner solenoid you the following formula:

\Phi_B=BA=\mu_oNIA

mu_o: magnetic permeability of vacuum = 4pi*10^-7 T/A

N: turns of the solenoid = 340

I: current of the inner solenoid = 0.100A

A: area of the inner solenoid = pi*r^2

r: radius of the inner solenoid = 2.00cm/2=1.00cm=10^-2m

You calculate the area and then replace the values of N, I, mu_o and A to find the magnetic flux:

A=\pi(10^{-2}m)^2=3.141510^{-4}m^2\\\Phi_B=(4\pi*10^{-7}T/A)(340)(0.100A)(3.1415*10^{-4}m^2)=1.34*10^{-8}W\\

the magnetic flux is 1.34*10^{-8}W

b) the mutual inductance is given by:

M=\mu_o N_1 N_2 \frac{A_2}{l}

N1: turns of the outer solenoid = 22

N2: turns of the inner solenoid

A_2: area of the inner solenoid

l: length of the solenoids = 25.0cm=0.25m

by replacing all these values you obtain:

M=(4\pi*10^{-7}T/A)(340)(22)\frac{3.14*10^{-4}m^2}{0.25m}=1.18*10^{-5}H

the mutual inductance is 1.18*10^{-5}H

c) the emf induced can be computed by using the mutual inductance and the change in the current of the inner solenoid:

\epsilon_1=M\frac{dI_2}{dt}

by replacing you obtain:

\epsilon_1=(1.18*10^{-5}H)(1700A/s)=0.02V=20mV

the emf is 20mV

7 0
3 years ago
Read 2 more answers
What exerts a centripetal force on a person running around a curve?
Eduardwww [97]

Answer:

The inertial force of the body

Explanation:

Everybody that is moving in a curved path has an inertial force called centrifugal force.

The counterforce of the centrifugal force is called the centripetal force. It also acts on every rotating body.

This force is always directed towards the center of the origin of the curve.

The velocity of the object changes its direction and magnitude at any instant of time. But the speed and angular velocity of the object remains the same for uniform circular motion.

So, according to the Newtonian mechanics, it is the inertial force of the body responsible for the centripetal force.

5 0
3 years ago
Other questions:
  • A block of mass m=0.4 kg starts from rest and slides down a frictionless ramp, before hitting a spring of spring constant k = 30
    6·1 answer
  • An action potential in a particular cell has the same amplitude. True or False
    9·1 answer
  • The neurons that select a particular motor program are the __________.
    11·1 answer
  • When you throw a pebble straight up with initial speed V, it reaches a maximum height H with no air resistance. At what speed sh
    7·1 answer
  • 1. A 2.10 m rope attaches a tire to an overhanging tree limb. A girl swinging on the
    8·1 answer
  • To model this process, assume two charged spherical conductors are connected by a long conducting wire and a 1.20-mC charge is p
    13·1 answer
  • Please Help!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11
    6·1 answer
  • If you push on a heavy box that is at rest, you must exert some force to start its motion. 5. however, once the box is in motion
    10·1 answer
  • 1. Four identical elephants are at different heights. If your physics teacher
    14·1 answer
  • When is the electric flux on a section of a closed surface positive?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!