The wise and careful use of energy is called CONSERVATION
Answer:
v₂ = 0.56 m / s
Explanation:
This exercise can be done using Bernoulli's equation
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Where points 1 and 2 are on the surface of the glass and the top of the straw
The pressure at the two points is the same because they are open to the atmosphere, if we assume that the surface of the vessel is much sea that the area of the straw the velocity of the surface of the vessel is almost zero v₁ = 0
The difference in height between the level of the glass and the straw is constant and equal to 1.6 cm = 1.6 10⁻² m
We substitute in the equation
+ ρ g y₁ =
+ ½ ρ v₂² + ρ g y₂
½ v₂² = g (y₂-y₁)
v₂ = √ 2 g (y₂-y₁)
Let's calculate
v₂ = √ (2 9.8 1.6 10⁻²)
v₂ = 0.56 m / s
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>