<span>Δ</span>E = q + w
q = heat (quantity of)
q and w can be positive or negative depending on if work/heat is being absorbed/done on the system or released/done by the system
Answer:
B) the average distance from the Earth to the Sun
Explanation:
Answer:
1) Can change the state of an object(rest to motion/ motion to rest):For example, pushing a heavy stone in order to move it. 2) May change the speed of an object if it is already moving. 4) May bring about a change in the shape of an object. For example, blowing air in balloon.
Answer:
The acceleration of
is 
Explanation:
From the question we are told that
The mass of first block is 
The angle of inclination of first block is 
The coefficient of kinetic friction of the first block is 
The mass of the second block is 
The angle of inclination of the second block is 
The coefficient of kinetic friction of the second block is 
The acceleration of
are same
The force acting on the mass
is mathematically represented as

=> 
Where T is the tension on the rope
The force acting on the mass
is mathematically represented as


At equilibrium

So

making a the subject of the formula

substituting values 
=> 
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.