The peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.
<h3>Relationship between electric and magnetic field</h3>
The relationship between electric and magnetic field at a given peak electric field is given as;
c = (E₀) / (B₀)
where;
- c is speed of light
- E₀ is the peak electric field
- B₀ is the peak magnetic field
B₀ = E₀ / c
B₀ = (2.9) / (3 x 10⁹)
B₀ = 9.67 x 10⁻¹⁰ T
Thus, the peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.
Learn more about peak magnetic field here: brainly.com/question/24487261
A stream’s discharge rate if it has a width of 10 meters, a depth of 2 meters, and a velocity of 2 meters per second will be 40
/sec .
Discharge rate = velocity * area
= velocity * depth * width
= 2 * 2 * 10 = 40
/sec
A stream’s discharge rate if it has a width of 10 meters, a depth of 2 meters, and a velocity of 2 meters per second will be 40
/sec .
learn more about discharge rate
brainly.com/question/20709500?referrer=searchResults
#SPJ4
C. element only one substance
Complete question:
A train has an initial velocity of 44m/s and an acceleration of -4m/s². calculate its velocity after 10s ?
Answer:
the final velocity of the train is 4 m/s.
Explanation:
Given;
initial velocity of the train, u = 44 m/s
acceleration of the train, a = -4m/s² (the negative sign shows that the train is decelerating)
time of motion, t = 10 s
let the final velocity of the train = v
The final velocity of the train is calculated using the following kinematic equation;
v = u + at
v = 44 + (-4 x 10)
v = 44 - 40
v = 4 m/s
Therefore, the final velocity of the train is 4 m/s.
Average speed = (total distance covered) / (total time to cover the distance)
= (2,742 km) / (4.33 hours)
= (2,742 / 4.33) km/hr
= 633 km/hr (rounded)