<em>Answer:</em>
<h3><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>True</em></h3>
- <em>Because </em><em>Gravity is the force of attraction between two objects, and Earth's gravity pulls matter downward, toward its center. It pulls precipitation down from clouds and pulls water downhill. Gravity also moves air and ocean water. ... Gravity pulls denser air and water downward, forcing less dense air and water to move upward.</em>
<em>Carryonlearning</em>
One of the concepts to be used to solve this problem is that of thermal efficiency, that is, that coefficient or dimensionless ratio calculated as the ratio of the energy produced and the energy supplied to the machine.
From the temperature the value is given as

Where,
T_L = Cold focus temperature
T_H = Hot spot temperature
Our values are given as,
T_L = 20\° C = (20+273) K = 293 K
T_H = 440\° C = (440+273) K = 713 K
Replacing we have,



Therefore the maximum possible efficiency the car can have is 58.9%
It is itself. This question does not make sense.
Answer:
D) directly, inversely
Explanation:
The energy of a photon of light is directly proportional to its frequency and inversely proportional to its wavelength.
Frequency is the number of waves that passes through a point per unit of time.
Wavelength is the is the distance between successive crests or troughs on a wave.
Mathematically, frequency is related to wavelength and velocity using;
Energy = h x f
where h is the Planck's constant
f is the frequency
Since c = f ∧
where f is the frequency of the wave
∧ is the wavelength of the wave
c is the speed of light
So;
f = c/∧
Therefore;
E = 
From the equation, we see an inverse relationship between E and wavelength and a direct one with frequency.