Explanation:
Electromagnetic wave Wavelength
(1) Microwave = 1 m to 1 mm =
to 
(2) Ultraviolet = 10 nm to 400 nm
(3) Radio waves = 1 mm to 100 km =
to 
(4) Infrared = 700 nm to 1 mm
(5) X-ray = 0.01 nm to 10 nm
(6) Visible = 400 nm t0 700 nm
a) In order of increasing wavelength:
: 5 < 2 < 6 < 4 < 1 < 3
b) Frequency of the electromagnetic wave given as:

= frequency
= Wavelength
c = speed of light

So, the increasing order of frequency:
: 3 < 1 < 4 < 6 < 2 < 5
c) Energy(E) of the electromagnetic wave is given by Planck's equation :


So, the increasing order of energy:
: 3 < 1 < 4 < 6 < 2 < 5
Answer:
The correct answer to this question is C
Explanation:
<h3>
Answer:</h3>
495 g K₃N
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.77 mol K₃N
<u>Step 2: Identify Conversions</u>
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of K₃N - 3(39.10) + 14.01 = 131.31 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
495.039 g K₃N ≈ 495 g K₃N
1) when litmus paper is dipped into a acid solution, the litmus paper turns red.
<span>2) acid reacts with metals to produce hydrogen gas </span>
<span>3) the equation of an acidic substance begins with the letter 'H' such as HCl </span>
This question is describing the following chemical reaction at equilibrium:

And provides the relative amounts of both A and B at 25 °C and 75 °C, this means the equilibrium expressions and equilibrium constants can be written as:

Thus, by recalling the Van't Hoff's equation, we can write:

Hence, we solve for the enthalpy change as follows:

Finally, we plug in the numbers to obtain:
![\Delta H=\frac{-8.314\frac{J}{mol*K} *ln(0.25/9)}{[\frac{1}{(75+273.15)K} -\frac{1}{(25+273.15)K} ] } \\\\\\\Delta H=4,785.1\frac{J}{mol}](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Cfrac%7B-8.314%5Cfrac%7BJ%7D%7Bmol%2AK%7D%20%2Aln%280.25%2F9%29%7D%7B%5B%5Cfrac%7B1%7D%7B%2875%2B273.15%29K%7D%20-%5Cfrac%7B1%7D%7B%2825%2B273.15%29K%7D%20%5D%20%7D%20%5C%5C%5C%5C%5C%5C%5CDelta%20H%3D4%2C785.1%5Cfrac%7BJ%7D%7Bmol%7D)
Learn more: