1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kozerog [31]
2 years ago
13

What is the current when the resistance is 5 ohms and the voltage is 10 volts?

Physics
2 answers:
Travka [436]2 years ago
5 0
Ohm's Law states V = IR
So,
I = V/R
The answer is B. 10/5=2 amps
pav-90 [236]2 years ago
3 0
B. 10/5=2 amps.................
You might be interested in
What is the speed of a wave that has a frequency of 200 Hz and a
Luba_88 [7]
The wave speed to this question is 400 meters
8 0
3 years ago
Which universal force acts on protons and neutrons in an atom’s nucleus
Yuliya22 [10]
The strong nuclear force overcomes the electric force of repulsion thatacts among the protons in thenucleus. B. The weak nuclear force is involved in certain types of radioactive processes. A.The strong nuclear force is a powerful force of attraction that acts only on theneutrons and protons in the nucleus.
6 0
3 years ago
Water can form large dewdrops in nature how would droplets made of vegetable oil instead of water be different
Natasha2012 [34]

Answer:d

Explanation: oil would form droplets but only tiny ones because it’s surface tension is lower than that of water

3 0
2 years ago
Read 2 more answers
In 1999, Robbie Knievel was the first to jump the Grand Canyon on a motorcycle. At a narrow part of the canyon (65 m wide) and t
vfiekz [6]

Answer:

His launching angle was 14.72°

Explanation:

Please, see the figure for a graphic representation of the problem.

In a parabolic movement, the velocity and displacement vectors are two-component vectors because the object moves along the horizontal and vertical axis.

The horizontal component of the velocity is constant, while the vertical component has a negative acceleration due to gravity. Then, the velocity can be written as follows:

v = (vx, vy)

where vx is the component of v in the horizontal and vy is the component of v in the vertical.

In terms of the launch angle, each component of the initial velocity can be written using the trigonometric rules of a right triangle (see attached figure):

sin angle = opposite / hypotenuse

cos angle = adjacent / hypotenuse

In our case, the side opposite the angle is the module of v0y and the side adjacent to the angle is the module of vx. The hypotenuse is the module of the initial velocity (v0). Then:

sin angle = v0y / v0  then: v0y = v0 * sin angle

In the same way for vx:

vx = v0 * cos angle

Using the equation for velocity in the x-axis we can find the equation for the horizontal position:

dx / dt = v0 * cos angle

dx = (v0 * cos angle) dt (integrating from initial position, x0, to position at time t and from t = 0 and t = t)

x - x0 = v0 t cos angle

x = x0 + v0 t cos angle

For the displacement in the y-axis, the velocity is not constant because the acceleration of the gravity:

dvy / dt = g ( separating variables and integrating from v0y and vy and from t = 0 and t)

vy -v0y = g t

vy = v0y + g t

vy = v0 * sin angle + g t

The position will be:

dy/dt = v0 * sin angle + g t

dy = v0 sin angle dt + g t dt (integrating from y = y0 and y and from t = 0 and t)

y = y0 + v0 t sin angle + 1/2 g t²

The displacement vector at a time "t" will be:

r = (x0 + v0 t cos angle, y0 + v0 t sin angle + 1/2 g t²)

If the launching and landing positions are at the same height, then the displacement vector, when the object lands, will be (see figure)

r = (x0 + v0 t cos angle, 0)

The module of this vector will be the the total displacement (65 m)

module of r = \sqrt{(x0 + v0* t* cos angle)^{2} }  

65 m = x0 + v0 t cos angle ( x0 = 0)

65 m / v0 cos angle = t

Then, using the equation for the position in the y-axis:

y = y0 + v0 t sin angle + 1/2 g t²

0 =  y0 + v0 t sin angle + 1/2 g t²

replacing t =  65 m / v0 cos angle and y0 = 0

0 = 65m (v0 sin angle / v0 cos angle) + 1/2 g (65m / v0 cos angle)²  

cancelating v0:

0 = 65m (sin angle / cos angle) + 1/2 g * (65m)² / (v0² cos² angle)

-65m (sin angle / cos angle) = 1/2 g * (65m)² / (v0² cos² angle)  

using g = -9.8 m/s²

-(sin angle / cos angle) * (cos² angle) = -318.5 m²/ s² / v0²

sin angle * cos angle = 318.5 m²/ s² / (36 m/s)²

(using trigonometric identity: sin x cos x = sin (2x) / 2

sin (2* angle) /2 = 0.25

sin (2* angle) = 0.49

2 * angle = 29.44

<u>angle = 14.72°</u>

3 0
3 years ago
Find the force required to do 25 joule work when the force causes a displacement of 0.5 m​
Eduardwww [97]

Answer:

<h2>50 N</h2>

Explanation:

The force required can be found by using the formula

f =  \frac{w}{d}  \\

w is the workdone

d is the distance

From the question we have

f =  \frac{25}{0.5}  \\

We have the final answer as

<h3>50 N</h3>

Hope this helps you

6 0
2 years ago
Other questions:
  • PLZ HELP ME 50 POINTS AND BRAINLEIST Which processes do you suppose are responsible for the formation of hail during a thunderst
    11·1 answer
  • Someone please help on this physics question?
    8·1 answer
  • What is a transverse wave?
    10·1 answer
  • X-rays cannot pass through Earth's atmosphere. Which of these is the best location to place a telescope used to observe x-rays f
    6·2 answers
  • How much heat is evolved when 1234 g of water condenses to a liquid at 100.°c?
    12·1 answer
  • How was Edwin Hubble able to use his discovery of Cepheids in Andromeda to prove that the "spiral nebulae" were actually galaxie
    10·1 answer
  • Which object would have the most momentum?
    14·2 answers
  • Mass is the amount of _____
    14·2 answers
  • Imagine a string of holiday lights, with many bulbs connected to each other by wires. One bulb burns out, causing the bulbs next
    10·1 answer
  • A boy throws a ball vertically up it returns the ground after 10 seconds find the maximum height reached by the ball
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!