1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kozerog [31]
3 years ago
13

What is the current when the resistance is 5 ohms and the voltage is 10 volts?

Physics
2 answers:
Travka [436]3 years ago
5 0
Ohm's Law states V = IR
So,
I = V/R
The answer is B. 10/5=2 amps
pav-90 [236]3 years ago
3 0
B. 10/5=2 amps.................
You might be interested in
If you go to columbiana middle put your real name
ololo11 [35]

Answer:

its in my user

Explanation:

5 0
4 years ago
Read 2 more answers
A paint brush is dropped from the top of a tall ladder and free falls to the ground. What changes, if any, would be observed of
muminat

Answer:

Explanation:

As the paint brush is dropped from the top of a tall ladder it started free falling

i.e. velocity of brush increases as it falls down due to the acceleration provided by gravity.

We know acceleration due to gravity is the attraction experienced by the object due to earth attraction

Value of acceleration due to gravity is constant i.e. 9.8\ m/s^2

Therefore the correct choice is

velocity is increasing and acceleration is constant

4 0
4 years ago
The beat your doctor listens to through a sethoscope is the sound of the four values opening
djyliett [7]

and closing .

The heart has 4 valves. They are what makes the lub-dub lub-dub sounds that can be heard from the chest.  

The mitral valve is located between the left atrium and the left ventricle. It closes the left atrium to collect oxygenated blood from the lungs and opens to pass it on to the left ventricle.

The tricuspid valve is located between the right atrium and the right ventricle. It closes the right atrium to hold unoxygenated blood and opens to pass it on to the right ventricle ensuring a one way flow.

The aortic valve is located between the aorta and the left ventricle. It closes the left ventricle and opens to the aorta to pass on the oxygen-rich blood to the body.

The pulmonary valve is located between the pulmonary artery and the right ventricle. It closes off the right ventricle and opens to pass on unoxygenated blood to the lungs.


5 0
3 years ago
A truck is moving at 2.0 m/s accelerates at a rate of +2.00 m/s2. It does this over a distance of 400.0m. Find the final velocit
otez555 [7]

If <em>v</em> is the truck's final velocity, then

<em>v</em>² - (2.0 m/s)² = 2 * (2.00 m/s²) * (400.0 m)

<em>v</em>² = 1604 m²/s²

<em>v</em> = 40.05 m/s ≈ 40 m/s

3 0
3 years ago
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
Other questions:
  • The circuit in Fig. P4.23 utilizes three identical diodes having IS = 10−14 A. Find the value of the current I required to obtai
    5·1 answer
  • Which multiplier does the word kilo represent? A. 100 B. 1,000 C. `(1)/(100)` D. `(1)/(10)`
    10·1 answer
  • What sound intensity levels (in dB) must sounds of frequencies 60, 100, and 800 Hz have in order to have the same loudness as a
    5·2 answers
  • : Fission, Fusion and Nuclear Energy Define fission and fusion and provide an example of each type of reaction. Then answer the
    9·1 answer
  • Falls resulting in hip fractures are a major cause of injury and even death to the elderly. Typically, the hip’s speed at impact
    8·1 answer
  • A student decides to spend spring break by driving 50 miles due east, then 50 miles 30 degrees south of east, then 50 miles 30 d
    5·1 answer
  • A thin conducing plate 2.3 m on a side is given a total charge of −20.0 µC. (Assume the upward direction is positive.) (a) What
    14·1 answer
  • Which of the following elements is an alkali metal?
    8·1 answer
  • What is the advantage of constantly performing endurance training such as Brisk walking or jogging, Yard work, Dancing, Swimming
    11·1 answer
  • A cylinder is given a push and then rolls up an inclined plane. If the origin is the starting point, sketch the position, veloci
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!