We can look at all the ages of the earth since it’s a big crack is reveals many layers of the earth and we can know about chemicals and metals that were in earth and diffrent times
Answer:
After 12 seconds, the area enclosed by the ripple will be increasing rapidly at the rate of 1206.528 ft²/sec
Explanation:
Area of a circle = πr²
where;
r is the circle radius
Differentiate the area with respect to time.

dr/dt = 4 ft/sec
after 12 seconds, the radius becomes = 
To obtain how rapidly is the area enclosed by the ripple increasing after 12 seconds, we calculate dA/dt


dA/dt = 1206.528 ft²/sec
Therefore, after 12 seconds, the area enclosed by the ripple will be increasing rapidly at the rate of 1206.528 ft²/sec
Answer:
The correct option is: Total energy
Explanation:
The Hamiltonian operator, in quantum mechanics, is an operator that is associated with the<u> total energy of the system.</u> It is equal to the sum of the total kinetic energy and the potential energy of all the particles of the system.
The Hamiltonian operator was named after the Irish mathematician, William Rowan Hamiltonis denoted and is denoted by H.
Ball 4 because the higher the elevation is the greater the potential energy it has
Answer:
How far will the electron travel beforehitting a plate is 248.125mm
Explanation:
Applying Gauss' law:
Electric Field E = Charge density/epsilon nought
Where charge density=1.0 x 10^-6C/m2 & epsilon nought= 8.85× 10^-12
Therefore E = 1.0 x 10^-6/8.85× 10^-12
E= 1.13×10^5N/C
Force on electron F=qE
Where q=charge of electron=1.6×10^-19C
Therefore F=1.6×10^-19×1.13×10^5
F=1.808×10^-14N
Acceleration on electron a = Force/Mass
Where Mass of electron = 9.10938356 × 10^-31
Therefore a= 1.808×10^-14 /9.11 × 10-31
a= 1.985×10^16m/s^2
Time spent between plate = Distance/Speed
From the question: Distance=1cm=0.01m and speed = 2×10^6m/s^2
Therefore Time = 0.01/2×10^6
Time =5×10^-9s
How far the electron would travel S =ut+ at^2/2 where u=0
S= 1.985×10^16×(5×10^-9)^2/2
S=24.8125×10^-2m
S=248.125mm