Answer:
Seahawks
Explanation:
THEY ARE THE BEST TEAM!!!
At the top:
Potential Energy = (mass) x (gravity) x (height)
= (30 kg) x (9.8 m/s²) x (3 meters)
= 882 joules
At the bottom:
Kinetic Energy = (1/2) x (mass) x (speed)²
= (1/2) x (30 kg) x (3 m/s)²
= (15 kg) x (9 m²/s²)
= 135 joules .
He had 882 joules of potential energy at the top,
but only 135 joules of kinetic energy at the bottom.
Friction stole (882 - 135) = 747 joules of his energy while he slid down.
The seat of his jeans must be pretty warm.
The work-energy theorem explains the idea that the net work - the total work done by all the forces combined - done on an object is equal to the change in the kinetic energy of the object. After the net force is removed (no more work is being done) the object's total energy is altered as a result of the work that was done.
This idea is expressed in the following equation:
is the total work done
is the change in kinetic energy
is the final kinetic energy
is the initial kinetic energy
mark me as brainliest ❤️
Answer:
a)W= - 720 J
b)ΔU= 330 J
Explanation:
Given that
P = 0.8 atm
We know that 1 atm = 100 KPa
P = 80 KPa
V₁ = 12 L = 0.012 m³ ( 1000 L = 1 m³)
V₂ = 3 L = 0.003 m³
Q= - 390 J ( heat is leaving from the system )
We know that work done by gas given as
W = P (V₂ -V₁ )
W= 80 x ( 0.003 - 0.012 ) KJ
W= - 0.72 KJ
W= - 720 J ( Negative sign indicates work done on the gas)
From first law of thermodynamics
Q = W + ΔU
ΔU=Change in the internal energy
Now by putting the values
- 390 = - 720 + ΔU
ΔU= 720 - 390 J
ΔU= 330 J
Answer:
Explained below
Explanation:
When we eat food, our body gets chemical energy from it. Now, this chemical energy from the food is changed into some different energy forms that is useful to it. They include:
-Chemical to mechanical energy to aid in movement of muscles
- chemical to thermal energy to aid in regulating the body temperature.
- chemical to electrical energy to aid the brain in thinking.
Thus is similar to how a machine converts energy because machines also generate energy after being powered and convert to other forms of energy. For example, an alarm clock converts electrical energy to sound energy, hair dryer converts electrical energy to thermal/heat energy.