Explanation:
It is known that wave intensity is the power to area ratio.
Mathematically, I = 
As it is given that power is 28.0 W and area is
.
Therefore, sound intensity will be calculated as follows.
I = 
= 
= 
or, = 
Thus, we can conclude that sound intensity at the position of the microphone is
.
The position of the object at time t =2.0 s is <u>6.4 m.</u>
Velocity vₓ of a body is the rate at which the position x of the object changes with time.
Therefore,

Write an equation for x.

Substitute the equation for vₓ =2t² in the integral.

Here, the constant of integration is C and it is determined by applying initial conditions.
When t =0, x = 1. 1m

Substitute 2.0s for t.

The position of the particle at t =2.0 s is <u>6.4m</u>
The answer is 2.49 x 10^5 KJ. This was obtained (1) use the formula for specific heat to achieve Q or heat then (2) get the energy to melt the copper lastly (3) Subtract both work and the total energy required to completely melt the copper bar is achieved.
Answer:
On real life example of a scenario that takes advantage of the inverse relationship between force and time when impulse is constant is when making a serve with a lawn tennis racket
How It is an example of impulse is that when a serve is made by moving the bat slowly, the lawn tennis player uses less force and the ball is in contact with the string for longer a period
When however, the lawn tennis player moves the racket faster, with the strings of the racket highly tensioned he uses more force and the ball also spends less time on the racket to produce the same momentum
Explanation:
The impulse of a force, ΔP is given by the following formula;
ΔP = F × Δt
Where ΔP is constant, we have;
F ∝ 1/Δt
Therefore, for the same impulse, when the force is increased, the time of contact is decreases and vice versa.
Answer:
The object's velocity would increase due to the change in force.
Explanation: