Answer:
Ek1 = 900000 [J]
Ek1 = 400000 [J]
Explanation:
In order to solve this problem we must remember that kinetic energy is defined as the product of mass by velocity squared by a medium. Therefore using the following equation we have:
where:
m = mass = 500 [kg]
v1 = 60 [m/s]
So we have:
Ek1 = 0.5*500*(60^2)
Ek1 = 900000 [J]
and:
Ek2 = 0.5*500*(40^2)
Ek2 = 400000 [J]
Gravitational force is reduced by:
B. The square of the distance..... hope that helps ;)
Explanation:
Below is an attachment containing the solution
A solar eclipse occurs when the moon crosses in front of the Sun, blocking some or all of its rays. A lunar eclipse happens when the moon is directly behind the earth, blocking the moon from receiving light. The only light comes from the light on earth's reflected shadow.
You can look at a lunar eclipse because there is very little light or none at all. You can't look at a solar eclipse because you are looking directly at the sun unless it is complete. Before totality, only some of the Sun is blocked, causing your pupils dilate to let in more light. Since they do this, more of the Sun's rays can be let in to the eye, which effectively allows your eyes to burn.
Some doctors and eye care specialists say that after someone complains of blindness after looking at a solar eclipse unaided, they can see what the Sun and moon looked like at the time that they looked at it, as it is burned onto their retinas.
Answer:it experiences no force
Explanation:
a charge moving in a direction parallel to the magnetic field experience no force.since the angle e is 0,force would also be 0