Answer:
A liquid-fueled rocket has two liquids (liquids are good because of the density, they need less space than a gas to be stored), such that these liquids are called the fuel and the oxidizer.
These liquids are injected into a system that leads to a combustion chamber, where the liquids are mixed (we need to mix the fuel with the oxidizer to enable the combustion of the fuel) and burned to produce thrust.
Some common examples of oxidizers are liquid oxygen, which may be combined with fuels like liquid hydrogen, liquid methane, kerosene and hydrazine.
Other oxidizers are liquid fluorine (which also can be combined with the fuels liquid hydrogen and hydrazine), nitrogen tetroxide (which can be combined whit kerosene, hydrazine and other fuels) and FLOX-70, which can only be combined with kerosene.
The "most commonly used" may depend on the country and the type of liquid propellant ( petroleum, cryogens, and hypergols)
Such that the most common oxidizer may be liquid oxygen, and the most common fuel the kerosene.
1. 0.33 M
2. 0.278 M
<h3>Further explanation</h3>
Molarity is a way to express the concentration of the solution
Molarity shows the number of moles of solute in every 1 liter of solute or mmol in each ml of solution

Where
M = Molarity
n = Number of moles of solute
V = Volume of solution
1. 0.350 mol of NaOH in 1.05 L of solution.
n=0.35
V=1.05 L
Molarity :

2. 14.3 g of NaCl in 879 mL of solution.
mol NaCl(MW=58.5 g/mol) :

Molarity :

Answer:
When hydrogen is passed over hot ferric oxide (FeO) hydrogen reacts with oxygen present in the compound and forms water (H2O) and pure Iron
Explanation:
The number of energy levels to which an electron can jump depends on the amount of energy the electron possesses. Each energy level has a specific amount of energy an electron needs to have before it can be in there. So, if an electron doesn't have enough energy to be in that energy level then it won't jump to that higher level.